Translate

El ciclo de Carnot

Los ciclos reversibles  sirven como puntos de partida en el desarrollo de ciclos reales y se modifican según sea necesario para satisfacer ciertos requerimientos.

Es probable que el ciclo reversible más conocido sea el ciclo de Carnot, propuesto en 1824 por el ingeniero francés Sadi Carnot. El cual es un ciclo teórico y reversible, su limitación es la capacidad que posee un sistema para convertir en calor el trabajo, se utiliza en las máquinas que usan vapor o una mezcla de combustible con aire u oxígeno.  

Consta de dos principios los cuales son:

1. La eficiencia de una máquina térmica irreversible es siempre menor que la eficiencia de una máquina reversible que opera entre los mismos dos depósitos.

2. Las eficiencias de las máquinas térmicas reversibles que operan entre los mismos dos depósitos son las mismas.

La máquina térmica teórica que opera en el ciclo de Carnot se llama máquina térmica de Carnot, cuyo ciclo se compone de cuatro procesos reversibles, dos isotérmicos y dos adiabáticos, y que es posible llevar a cabo en un sistema cerrado o de flujo estacionario.


Considere un sistema cerrado conformado por un gas contenido en un dispositivo de cilindro-émbolo adiabático. El aislamiento de la cabeza del cilindro es tal que puede ser eliminado para poner al cilindro en contacto con depósitos que proporcionan transferencia de calor.

Los cuatro procesos reversibles que conforman el ciclo de Carnot son los siguientes:

Expansión isotérmica reversible (proceso 1-2, TH = constante). Inicialmente (estado 1), la temperatura del gas es TH y la cabeza del cilindro está en contacto estrecho con una fuente a temperatura TH . Se permite que el gas se expanda lentamente y que realice trabajo sobre los alrededores. Cuando el gas se expande su temperatura tiende a disminuir, pero tan pronto como disminuye la temperatura en una cantidad infinitesimal dT, cierta cantidad de calor se transfiere del depósito hacia el gas, de modo que la temperatura de éste se eleva a TH. Así, la temperatura del gas se mantiene constante en TH. Como la diferencia de temperatura entre el gas y el depósito nunca excede una cantidad diferencial dT, éste es un proceso reversible de transferencia de calor. El proceso continúa hasta que el émbolo alcanza la posición 2. La cantidad de calor total transferido al gas durante este proceso es QH.

Expansión adiabática reversible: (proceso 2-3, la temperatura disminuye de TH a TL)  En el estado 2, el depósito que estuvo en contacto con la cabeza del cilindro se elimina y se reemplaza por aislamiento para que el sistema se vuelva adiabático. El gas continúa expandiéndose lentamente y realiza trabajo sobre los alrededores hasta que su temperatura disminuye de TH a TL  (estado 3). Se supone que el émbolo no experimenta fricción y el proceso está en cuasiequilibrio, de modo que el proceso es reversible así como adiabático.

Compresión isotérmica reversible (proceso 3-4, TL = constante). En el estado 3, se retira el aislamiento de la cabeza del cilindro y se pone a éste en contacto con un sumidero a temperatura TL. Después una fuerza externa empuja al cilindro hacia el interior, de modo que se realiza trabajo sobre el gas. A medida que el gas se comprime, su temperatura tiende a incrementarse, pero tan pronto como aumenta una cantidad infinitesimal dT, el calor se transfiere desde el gas hacia el sumidero, lo que causa que la temperatura del gas descienda a . Así, la temperatura del gas permanece constante en TL . Como la diferencia de temperatura entre el gas y el sumidero nunca excede una cantidad diferencial dT, éste es un proceso de transferencia de calor reversible, el cual continúa hasta que el émbolo alcanza el estado 4. La cantidad de calor rechazado del gas durante este proceso es QL .

Compresión adiabática reversible: (proceso 4-1, la temperatura sube de TL a TH ). El estado 4 es tal que cuando se elimina el depósito de baja temperatura, se coloca el aislamiento de nuevo en la cabeza del cilindro y se comprime el gas de manera reversible, entonces el gas vuelve a su estado inicial (estado 1). La temperatura sube de TL a TH durante este proceso de compresión adiabático reversible, que completa el ciclo.

Por ser un ciclo reversible, el de Carnot es el más eficiente que opera entre dos límites de temperatura especificados. Aun cuando el ciclo de Carnot no se puede lograr en la realidad, la eficiencia de los ciclos reales se mejora al intentar aproximarse lo más posible al de Carnot.




Ciclo de Carnot inverso
El ciclo de la máquina térmica de Carnot recién descrito es totalmente reversible, por lo tanto todos los procesos que abarca se pueden invertir, en cuyo caso se convierte en el ciclo de refrigeración de Carnot. Esta vez, el ciclo es exactamente el mismo excepto que las direcciones de las interacciones de calor y trabajo están invertidas: el calor en la cantidad se absorbe de un depósito a baja temperatura, el calor en la cantidad se rechaza hacia un depósito a alta temperatura, y se requiere una cantidad de trabajo , entrada para completar todo esto. El diagrama P-V del ciclo de Carnot invertido es el mismo que corresponde al ciclo de Carnot, excepto que se invierten las direcciones de los procesos, como se muestra en la siguiente figura.




No hay comentarios.:

Publicar un comentario